**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 



## Academia-Industry Cooperation "Needs First"

## Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)



Professor Hitoshi Nakada Associate Professor Tadahiro Furukawa Associate Professor Dr. Toshinao Yuki Professor Dr. Mitsuhiro Koden

Activityp.2~3Consortiump.4~5Background technologiesp.6~9Developed technologiesp.10~18Topics/Publicationp.19



**"Award from Minister of State for** 

### Member

Science and Technology Policy" Cabinet Office, Government of Japan (2017)



**p.20** 

**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 



## Mission and Activity

In flexible organic electronics technologies, we offer academia-industry collaboration with "Needs First", in which needs and requests from collaborating companies are the first priority. We support R&D for practical technologies of the collaborating companies, aiming at contribution to actual businesses. Our activity with "Needs First" was awarded from Minister of State for Science and Technology Policy, Government of Japan in 2017.

(Main technologies)

Activity

- **OLED devices and processes**
- **Materials and components for flexible organic electronics**
- Flexible substrates (ultra-thin glass, stainless steel foil, barrier film)
- Barrier technologies / Barrier evaluation and analysis



"Award from Minister of State for Science and Technology Policy" Cabinet Office, Government of Japan (2017)

- Flexible encapsulating technologies
- Printing and roll-to-roll (R2R) technologies for flexible organic electronics



### Features

- <u>"Needs First" (Business First)</u>
   Company's needs is the first priority
- <u>Merits in IPs</u>
- <u>Self-supporting accounting system</u> Unique model based on collaboration with industry
- Individual collaboration / Consortium

### Activities

- Support to company's R&D
- Evaluation by actual devices
- Proposal of solution
- Prototype samples

## Company's technology

#### Commercialization (Install to actual devices)

Technology improvement using device technologies of Yamagata University Needs First!

**Collaboration with Yamagata University** 



- Experts for practical development
   Evaluation in terms of practical devices
   Prototype using G1 substrate
   Feedback of all data and prototype samples to collaborating company for the utilizing to their business.
- ✓ Merits for IPs

### Skills

- Flexible substrate
- OLED devices and processes
- Barrier technologies
- Barrier evaluation and analysis
- Printing and R2R

### Cooperation

- Academia-Industry Cooperation Consortium (p.3~p.5)
  - 1) Yamagata University Flexible Organic Electronics Practical Key Technology Consortium (YU-FOC) [Apr. 2016~Mar. 2019]
  - 2) Yamagata University Flexible Electronics Japan-Germany International Collaborative Practical Utilization Consortium (YU-FIC) [Oct. 2017~Mar. 2021] (p.4)
  - 3) Yamagata University Flexible Electronics Consortium for Academia-Industry Cooperation (YU-FLEC) [Jan. 2018~Mar. 2023] (p.5)
- National Project (p.3)
- Individual Collaboration
- Evaluation support (p.8)
   WVTR (Water Vapor Transmission Rate) evaluation with MORESCO

**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 

## 山形大学 Yamagata University

## Activity Academia-Industry Collaboration "Needs First!"

Our concept is "Needs First", in which needs and requests from participating companies are the first priority in our academia-industry cooperation.





**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 



Consortium Yamagata University Flexible Electronics Japan-Germany **International Collaborative Practical Utilization Consortium (YU-FIC)** 

Yamagata University has constructed close connection with Saxony/Dresden in Germany in the field of organic electronics, coworking with Yamagata prefecture and Yonezawa city. Yamagata University Flexible Electronics Japan-Germany International Collaborative **Practical Utilization Consortium (YU-FIC) collaborates with companies and institutes in** Germany, aiming at novel flexible electronics products.

### **Project term**

**October 2017** ~ March 2021

## Subjects

LAOLA: Large Area Organic Lighting

## **Participants**

(Jan. 2019)

FUJIKURA KASEI CO., LTD. **KEIHIN RAMTECH CO., LTD. KOMORI** Corporation Mitsuboshi Diamond Industrial Co., Ltd. Nippon Electric Glass Co., Ltd.

- **Applications on ultra-thin substrates**
- IonT: Internet on Things Intelligent OLED-OPV **based Signage for interactive Advertisement**
- **F2E:** Free Form Electronics Freedom in design by thermo-formed printed electronics

### Leaders

- > Project leader: Associate Prof. T. Furukawa
- Fellow: Prof. T. Takahashi
- Secretary: Prof. M. Koden

## **Collaboration with German activity**

**NIPPON STEEL Chemical & Material Co., Ltd.** Seieido Printing Co., Ltd. SERIA ENGINEERING, INC. SurFtech Transnational Co., Ltd. TAKEDA PRINTING CO., LTD. **TEIJIN LIMITED Tokyo Process Service Co., Ltd.** The Japan Steel Works, LTD. WIREDGATE Inc.

YU-FIC collaborates with 24 German companies and institutes which are organized by Organic **Electronics Saxony (OES), having twice visits a every year, respectively.** 

## Activity



Germany (Nov. 2017)



**Japan (Feb. 2018)** 



LOPEC/Germany (Mar. 2018)



Germany (Sep. 2018)

Fintech 2018 (Dec. 2018)

**IDW'18 (Dec. 2018)** 

## **Related program**

• JST: Program on Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA) [FY2016~FY2020]

- MEXT: Construction Program of Open Innovation Organization [FY2018~FY2022]
- MEXT: Regional Innovation Eco-system Program [FY2018~FY2022]

**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 

## **Consolution** Yamagata University Flexible Electronics Consortium for Academia-Industry Cooperation (YU-FLEC)

Yamagata University Flexible Electronics Consortium for Academia-Industry Cooperation (YU-FLEC) is constructed by one-by-one collaboration with individual companies, proposing practical development based on the concept of "Needs First". We would appreciate it if you are interested in YU-FLEC.



- > Organic electronics such as OLED
- Others which collaborating companies request

## Activity

- Flexible OLEDs on stainless steel foil (p.11) (Nippon Steel & Sumitomo Metal Corporation)
  - To apply stainless steel foil with excellent gas barrier, temperature stability chemical stability, size stability, etc. to
     flexible OLEDs
  - To fabricate electrodes on stainless steel foil by using roll-to-roll (R2R) technologies
- Barrier films with high temperature tolerance for flexible OLEDs (p.13) (KURABO INDUSTRIES LTD.)
  - To apply barrier films with high temperature tolerance to flexible OLEDs
- Flexible encapsulating technologies for OLEDs (p.18)
   (Ajinomoto Co., Inc. / Ajinomoto Fine-Techno Co., Inc.)
   ✓ To develop laminating encapsulation for flexible OLEDs

Fellow: Prof. H. Nakada
Secretary: Prof. M. Koden







- Solution materials for novel light emitting devices.
  - ✓ To evaluate solution materials for novel light emitting devices
  - ✓ To develop novel light emitting devices with solution materials
- Equipment technologies for OLEDs
   ✓ To develop novel technologies for OLED fabrication equipment

**Related program** 

•MEXT: Construction Program of Open Innovation Organization [FY2018~FY2022]

**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 



## **OLED Device Fabrication**

Various types of OLED devices are fabricated based on the requests from collaborating companies. The fabricated OLED devices are utilized for the evaluation of technology potential and prototype samples.

## Material

•Small molecular OLED materials

Polymer OLED materials

Background technologies

- Fluorescent, phosphorescent and TADF materials
- •Quantum dot (QD) materials

## **Process for organic layers**

Vacuum evaporation
Solution processes: Spin-coat, Ink-jet, etc.





## **Device structure**

- Bottom emitting OLED
- Top-emitting OLED
- Transparent OLED (Both side emitting)

## **Barrier layer**

Inorganic barrier layer: CVD, Sputtering, ALD
Inorganic/organic alternative stacking barrier layer



R2R sputtering & CVD



Vacuum evaporation

Ink-jet

## Encapsulation

Various encapsulating technologies are applied • Common encapsulation with desiccant • Laminating encapsulation



Flexible substrate



**Sheet-type lamination** 





## Large size OLED

Large size OLED devices can be fabricated. The maximum substrate size: 30cm × 30cm



OLED vacuum evaporation equipment "ELVESS" (Tokki)



6

## Flexible OLED

Flexible OLED devices with various designs can be fabricated.



**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 



OLED devices with technologies of collaborating companies are evaluated from practical points of view. All evaluating results are feedbacked to the collaborating company and can be utilized to not only the next development but also the demonstration to their customers.  $\Re$ 

## **Emission uniformity**

Background technologies

> • Emission quality such as uniformity, defects, etc. of OLED devices are evaluated by visual

## **I-L-V characteristics**

- •OLED device characteristics are evaluated.
- \* I-V characteristics
- \* L-I characteristics
- \* Emission spectrum, etc.







## **Driving lifetime**

The reduction of emission intensity of OLED devices under constant current driving is evaluated.



Initial emission (No defect)

Emission after storage test (Dark spot)

### Others

The influences of various bending stress on device characteristics, lifetime, etc. are evaluated using bending equipment.







Folding

Both-side bending

7

Other evaluations can be used, based on the request from collaborating companies. (Example)

**AFM** 

Defect analysis

SEM, AFM
3D profile, etc.

43.4 μ m



Hybrid confocal microscopy 38.4

 山形大学 Yamagata University  $\mathbf{\Gamma}$ **Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 



## **Evaluation of Barrier Properties**

**Evaluation of barrier properties is very important in flexible organic electronics** development. We provide two evaluation methods which are "Calcium corrosion method" and "MA method (Modified differential pressure method with an Attached support)".

## **Ca corrosion method**

- Ca corrosion method utilizes the change in Ca reflectivity which changes by the reaction of Ca and H<sub>2</sub>O. This method is useful for the evaluation of defects in barrier layer.
- ✓ WVTR (Water Vapor Transmission Rate) is calculated from the evaluation results in Ca corrosion method.





**Evaluation equipment of Ca corrosion** 

#### **Microscopic observation of Ca corrosion** Ca corrosion method (40°C90%RH) 0.5 WVTR=1.3×10<sup>-5</sup>g/m<sup>2</sup>/day 0.4 Defect area (%) 0.3 0.2 0.1 **400 600** 800 10001200 200 **Storage tine (Hour)**

**WVTR calculation from Ca corrosion test** 

## MA method

### WVTR (Water Vapor Transmission Rate) evaluation (Collaborating with MORESCO)

- > We provide WVTR (Water Vapor Transmission Rate) evaluation, using the WVTR measurement equipment "Super Detect" of MORESCO.
- > The "Super Detect" utilizes the MA method (Modified differential pressure method with an Attached support) developed by the collaboration of MORESCO and AIST (National Institute of Advanced Industrial Science and **Technology**).
- $\succ$  The MA method reduces measurement time of high gas barrier film such as higher than 10<sup>-4</sup> g/(m<sup>2</sup> day), which are required in flexible OLED, OPV, etc. For example, the "Super Detect" requires only about 20 hours for the WVTR measurement of barrier films with the order of 10<sup>-5</sup> g/(m<sup>2</sup> day), for which the previous methods require about 100 hours. It should be noticed that the measurement time of the "Super Detect" is only 1/5 of previous methods.

- > In addition, the "Super Detect" is able to evaluate wide ranges of WVTR such as  $10^{+1} \sim 10^{-7}$  g/(m<sup>2</sup> day).
- > The "Super Detect" with the MA method is able to warrant the WVTR value by the attached compensating unit developed by AIST. > Moreover, the "Super Detect" is able to evaluate the transmission rate of not only water vapor but also various gasses.





山形大学 Yamagata University 7

**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 

## Printing and Roll-to-roll (R2R) Technologies

We provide printing and roll-to-roll (R2R) technologies, aiming at an innovation of production in flexible organic electronics.

## **Printing / Coating**

Various printing and coating equipment can be utilized for printing tests and device fabrications.



Background technologies







**Screen printing** 

**Flexography and** gravure offset printing

Ink-jet



## **Roll-to-roll (R2R)**

Four types of unique roll-to-roll (R2R) equipment are utilized for fabrications of electrodes, barrier layers, organic layers, etc.

- •Substrate width: 30cm
- Substrate: ultra-thin glass, stainless steel foil, flexible film



**R2R sputtering** &CVD (KOBELCO)



**R2R screen printing** (SERIA)



**R2R** gravure offset and flexography printing (Komori Machinery / Taiyo Kikai)



**R2R** wet cleaning (FEBACS)

## **Evaluation**

Various evaluation equipment are used for R&D of printing and roll-to-roll (R2R) technologies.









Hybrid confocal microscopy **Precise position** detector



#### **Contact angle measurement**

**Related prpgram** 

• MITI: "R&D subsidiary program for promotion of academia-industry cooperation" [FY2013~FY2014] • MEXT: Regional Innovation Strategy Support Program [FY2011~FY2015]

**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 

## Flexible OLEDs on Ultra-Thin Glass

We develop flexible OLED devices on ultra-thin glass G-Leaf<sup>®</sup> (Nippon Electric Glass).

## **Technological features**

Developed technologies

- Advantages of ultra-thin glass G-Leaf<sup>®</sup> of Nippon Electric Glass
   Flexible and roll shape due to thin thickness such as 50µm
  - Intrinsic advantages of glass (gas barrier, surface smoothness, temperature stability, chemical stability, size stability, etc.)
- Application of ultra-thin glass to flexible OLED devices.
  - Handling technologies overcoming the brittleness of ultra-thin glass

## **Developed technologies**

- **■** Flexible OLED devices on ultra-thin glass with the thickness of 50μm
  - Roll-to-roll (R2R) fabrication of transparent electrodes on ultra-thin glass without photolithography
  - •Application of ultra-thin glass to OLED substrate and encapsulating substrate.



#### Collaboration

### Nippon Electric Glass, SERIA ENGINEERING, FEBACS, Mitsuboshi Diamond Industrial, NIPPON STEEL Chemical & Material

#### **Related program**

- Yamagata University Flexible Organic Electronics Practical Key Technology Consortium (YU-FOC) [Apr. 2016~Mar. 2019]
- Yamagata University Flexible Electronics Japan-Germany International Collaborative Practical Utilization Consortium (YU-FIC) [Oct. 2017~Mar. 2021]
- MEXT: Construction Program of Open Innovation Organization [FY2018~FY2022]

#### **Publication**

- Nippon Electric Glass; "LED JAPAN 2018" (Oct. 2018), "FINETECH JAPAN 2018" (Dec. 2018).
- Mitsuboshi Diamond Industrial; "FINETECH JAPAN 2018" (Dec. 2018).
- T. Furukawa, N. Kawamura, T. Noda, Y. Hasegawa, D. Kobayashi, M. Koden, *IDW'17*, FLX6-2 (2017).
   "Novel Roll-to-Roll Fabrication Processes of Transparent Electrodes on Ultra-Thin Glass"

• T. Furukawa, M. Koden, *IEICE Trans. Electron*, E100-C, 949-954 (2017). "Novel roll-to-roll deposition and patterning of ITO on ultra-thin glass for flexible OLEDs"

山形大学 Yamagata University

**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 

## Flexible OLEDs on Stainless Steel Foil

We develop flexible OLED devices with stainless steel foil (thickness: 50µm) of **NIPPON STEEL & SUMITOMO METAL CORPORATION GROUP.** 

## **Technological features**

Developed technologies

- Advantages of stainless steel foils of NIPPON STEEL **& SUMITOMO METAL CORPORATION GROUP** • Thickness: 50µm
  - Excellent surface smoothness (Ra~0.6nm)
  - Excellent temperature and process resistances • High gas barrier ability

**Developed technologies** 



**Stainless steel foil** 

Flexible OLED on stainless steel foil Electrode (reflective anode) is fabricated on stainless steel foil by roll-to-roll (R2R) photolithography-free processes



#### **NIPPON STEEL & SUMITOMO METAL CORPORATION GROUP**

#### **Related program**

- Yamagata University Flexible Electronics Consortium for Academia-Industry Cooperation (YU-FLEC) [Jan. 2018~Mar. 2023]
- Yamagata University Flexible Electronics Japan-Germany International Collaborative Practical Utilization Consortium (YU-FIC) [Oct. 2017~Mar. 2021]
- MEXT: Construction Program of Open Innovation Organization [FY2018~FY2022]

#### **Publication**

- Y. Hagiwara, T. Furukawa, T. Yuki, S. Yamaguchi, N. Yamada, J. Nakatsuka, M. Koden, H. Nakada, IDW'17, FLXp1-9L(2017). "Roll-to-Roll Patterning of Reflective Electrode on Planarized Stainless Steel Foil"
- M. Koden, T. Furukawa, T. Yuki, H. Kobayashi, H. Nakada, IDW/AD'16, FLX3-1 (2016). "Substrates and Non-ITO Electrodes for Flexible OLEDs"
- Y. Hagiwara, H. Itoh, T. Furukawa, H. Kobayashi, S. Yamaguchi, N. Yamada, J. Nakatsuka, M. Koden, H. Nakada, IDW/AD'16, FLXp1-5 (2016).

11

"Roll-to-Roll Processing of Silver/ITO Continuous Deposition on Planarized Stainless Steel Foil"

**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 



## Developed technologies

## **Barrier Films for Flexible OLEDs**

We develop fabrication technologies of gas barrier layer on PEN film (TEIJIN), using roll-to-roll (R2R) PE-CVD.

## **Technological features**

- Roll-to-roll (R2R) PE-CVD deposition of gas barrier layer on PEN film
- High barrier ability with WVTR of the order of 10<sup>-6</sup>g/m<sup>2</sup>/day
- High gas barrier films with transparent electrode

## **Developed technologies**

Roll-to-roll (R2R) fabrication of barrier layer and transparent electrode on PEN film



Collaboration **TEIJIN LIMITED, Tosoh Corporation, FEBACS CO., LTD.** 

#### **Related program**

- Yamagata University Flexible Organic Electronics Practical Key Technology Consortium (YU-FOC) [Apr. 2016~Mar. 2019]
- Yamagata University Flexible Electronics Japan-Germany International Collaborative Practical Utilization Consortium (YU-FIC) [Oct. 2017~Mar. 2021]
- JST: Program on Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA) [FY2016~FY2020]
- MEXT: Construction Program of Open Innovation Organization [FY2018~FY2022]

#### **Publication**

- K. Taira, Taiga Suzuki, W. Konno, H Chiba, H. Itoh, M. Koden, T. Takahashi, T. Furukawa, *IDW'18*, FLX2-4L (2019). "Development of High Gas Barrier Film Using Novel Precursor by Roll to Roll PECVD"
- T. Suzuki, W. Konno, K. Taira, H Chiba, H. Itoh, M. Koden, T. Takahashi, T. Furukawa, *IDW'18*, FLXp1-10L (2019). "High Gas Barrier Films with Heterogeneous Multilayer"
- K. Taira, T. Furukawa, N. Kawamura, M. Koden, T. Takahashi, IDW'17, FLXp1-8L (2018). "High gas barrier film for OLED"



**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 

## High Temperature Tolerant Barrier Films for Flexible OLEDs

OLED fabrication often requires high temperature processes (higher than 200°C). From this point of view, we develop high temperature tolerant barrier films for flexible OLEDs, using EXPEEK film developed by KURABO.

## **Technological features**

Developed technologies

- Advantages of high temperature tolerant film EXPEEK (KURABO INDUSTRIES LTD.)
  - Biaxially stretched PEEK (polyetheretherketone) film
  - •Similar temperature tolerance to polyimide (PI) (Tg:320°C)



- Excellent solvent tolerance
- Excellent transparency
- Low thermal shrinkage

#### EXPEEK (KURABO INDUSTRIES)

- Application of EXPEEK with gas barrier layer to flexible OLED devices
  - •No requirement of reduction in process temperature (Ordinal fabrication processes for OLEDs can be used.)

## **Developed technologies**

Flexible OLED devices on high temperature tolerant film EXPEEK with gas barrier layer
 Barrier evaluation of high temperature tolerant film EXPEEK with gas barrier layer
 Flexible OLED device prototypes on high temperature tolerant film EXPEEK with gas barrier layer





## EXPEEK film (25µm)

### **Example of flexible OLED device**

**Prototypes of flexible OLED devices** 

#### Collaboration K

### **KURABO INDUSTRIES LTD.**

#### **Related program**

- Yamagata University Flexible Electronics Consortium for Academia-Industry Cooperation (YU-FLEC) [Jan. 2018~Mar. 2023]
- MEXT: Construction Program of Open Innovation Organization [FY2018~FY2022]

#### **Publication**

• KURABO; "7<sup>th</sup> Fine Plastic Exhibition" (Dec. 2018), "SEMICON Japan 2018" (Dec. 2018).

**EXPEEK<sup>®</sup>** is a registered trademark of KURABO INDUSTRIES LTD.



**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 

# Developed<br/>technologiesFabrication Technologies ofInorganic Barrier Layers for OLEDs

OLED devices require high gas barrier technologies. We develop fabrication technologies of inorganic gas barrier layers by using LIA(Low Inductance Antenna)-CVD developed by SCREEN Finetech Solutions.

### **Technological features**

- Inorganic gas barrier layer produced by LIA-CVD developed by SCREEN Finetech Solutions
  Advantages of LIA-CVD>
  - High deposition rate: SiNx faster than 3.0nm/sec
  - Excellent thickness uniformity within ±3%





 Yamagata University Flexible Organic Electronics Practical Key Technology Consortium (YU-FOC) [Apr. 2016~Mar. 2019]



**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 

## **Developed** technologies Non-ITO Transparent Electrode with Implanted Al-mesh Structure

ITO (Indium Tin Oxide), which is the most common transparent electrode in LCDs and OLEDs, has issues in cost, productivity, etc. We develop OLED devices using a non-ITO transparent electrode with novel implanted Al-mesh structure fabricated by Toyo Aluminium.

## **Technological features**

- Non-ITO transparent electrode with novel implanted Al-mesh structure fabricated by Toyo Aluminium K.K.
  - High conductivity led by Al-mesh
    Smeeth surface due to the implanted



| Al-mesh electrode into resin   |  |
|--------------------------------|--|
| Applicable to OLED, OPV, etc.  |  |
| Applicable to flexible devices |  |

|                                        | Surface resistance |
|----------------------------------------|--------------------|
| ITO (on glass)                         | <b>~</b> 10Ω/□     |
| ITO (on film)                          | <b>~</b> 40Ω/□     |
| Al-mesh developed by<br>Toyo Aluminium | <b>0.05~1Ω/□</b>   |



## **Developed technologies**

Al-mesh substrate

OLED devices using non-ITO transparent electrode with implanted Al-mesh electrode substrate fabricated by Toyo Aluminium K.K.







#### **Emission of OLED devices**

#### **Device structure of OLED**

**Collaboration Toyo Aluminium K.K., Prof. Takeshi Sano (INOEL, Yamagata University)** 

15

#### **Related program**

 JST: Program on Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA) [FY2018~FY2022]

#### **Publication**

• Toyo Aluminium; "48<sup>th</sup> INTERNEPCON Japan" (Jan. 2018).



**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 

## **Roll-to-roll (R2R) Fabrication of Flexible Substrates with Electrode**

We develop roll-to-roll (R2R) fabrication technologies of flexible substrates with electrode, aiming at large size OLED lighting.

\*Collaboration with German companies and institutes in Yamagata University Flexible Electronics Japan-Germany International Collaborative Practical Utilization Consortium (YU-FIC)

## **Technological features**

Roll-to-roll (R2R) fabrication of electrodes on flexible substrates by photolithography-free processes. (low cost, high productivity)



**R2R sputtering of TCO layer** 

**R2R screen printing of etching paste** 

**R2R** wet cleaning for TCO patterning

#### Flexible substrate

(TCO: Transparent Conducting Oxide)

**R2R screen printing of Ag electrode** 

**R2R screen printing of insulator** 

## Key technologies



Developed technologies



Ultra-thin glass Stainless steel foil (Nippon Electric Glass) (NIPPON STEEL Chemical & Material Co., Ltd.)

Plastic film (TEUJIN)



Printing roller



Screen mask (Tokyo Process Service)



**Conducting ink** (FUJIKURA KASEI)





Cutting (Mitsuboshi Diamond Industrial)

Flexible OLED device (Yamagata University) Barrier resin: tesa

No distortion of stencil mask

Our machine

Good accuracy of print dimensions and printing quality

30µm Line

Stable (Even) peel off

**Conventional machine** 

(gap=1.5mm)



Nippon Electric Glass, NIPPON STEEL Chemical & Material, TEIJIN, SERIA ENGINEERING, Tokyo Process Service, FUJIKURA KASEI, Mitsuboshi Diamond Industrial

#### **Related program**

- Yamagata University Flexible Organic Electronics Practical Key Technology Consortium (YU-FOC) [Apr. 2016~Mar. 2019]
- Yamagata University Flexible Electronics Japan-Germany International Collaborative Practical Utilization Consortium (YU-FIC) [Oct. 2017~Mar. 2021]
- JST: Program on Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA) [FY2016~FY2020]
- MEXT: Construction Program of Open Innovation Organization [FY2018~FY2022]
- MEXT: Regional Innovation Eco-system Program [FY2018~FY2022]

#### Publication

- Nippon Electric Glass; "LED JAPAN 2018" (Oct. 2018), "FINETECH JAPAN 2018" (Dec. 2018).
- Mitsuboshi Diamond Industrial; "FINETECH JAPAN 2018" (Dec. 2018).
- T. Furukawa, N. Kawamura, T. Noda, Y. Hasegawa, D. Kobayashi, M. Koden, *IDW'17*, FLX6-2 (2017). "Novel Roll-to-Roll Fabrication Processes of Transparent Electrodes on Ultra-Thin Glass"

16

T. Furukawa, M. Koden, *IEICE Trans. Electron*, E100-C, 949-954 (2017).
 "Novel roll-to-roll deposition and patterning of ITO on ultra-thin glass for flexible OLEDs"



**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 



We develop TFE (Thin Film Encapsulation) technologies for OLED devices, using organic resins developed by TOYO INK SC HOLDINGS.

### **Technological features**

Developed technologies

- To apply "Non-solvent UV-IJ resin ink" developed by TOYO INK SC HOLDINGS < Advantages of "Non-solvent UV-IJ resin ink" developed by TOYO INK SC HOLDINGS" >
  - To support SiNx barrier layer
    UV cure type (non-solvent)
- Inorganic barrier layer (SiN) Organic resin (Toyo Ink) Inorganic barrier layer (SiN) Cathode Barrier layer Barrier layer



## **Developed technologies**



- TFE structure with high gas barrier property
  - "Non-solvent UV-IJ resin ink" developed by TOYO INK SC HOLDINGS is sandwiched by SiN barrier layers
  - High gas barrier property :
    - \* No actual damage after storage test of 1,000 hours under 40°C/90%RH
    - \* WVTR (Water Vapor Transmission Rate): order of 10<sup>-6</sup>g/m<sup>2</sup>/day (40°C/90%RH)



200 400 600 800 1000 1200 Storage time (hour)

### Collaboration TOYO INK SC HOLDINGS CO., LTD.

#### **Related program**

- Yamagata University Flexible Organic Electronics Practical Key Technology Consortium (YU-FOC) [Apr. 2016~Mar. 2019]
- NEDO: Strategic technological innovation program for energy saving "Development of high efficient OLED materials" (Collaboration with CEREBA) [Aug. 2017~Mar. 2019].

#### **Publication**

• TOYO INK SC HOLDINGS CO., LTD.; News Release (13 Feb. 2018). http://schd.toyoinkgroup.com/ja/release/2018/18021301.html



**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 

## Laminating Encapsulation for OLEDs

We develop flexible OLED devices, using laminating encapsulating film AFTINNOVA<sup>TM</sup> EF developed by Ajinomoto Co., Inc. / Ajinomoto Fine-Techno Co., Inc.

## **Technological features**

Developed technologies

■ AFTINNOVA<sup>TM</sup> EF substrate protecting water penetration from side of OLED device

- Simple device architecture and simple fabrication process
- Reduction of defect occurrence by stress release effect of AFTINNOVA<sup>TM</sup> EF

## **Developed technologies**

Flexible substrate



AFTINNOVA<sup>TM</sup> EF (Ajinomoto) Barrier resin AFTINNOVA<sup>TM</sup> EF film (Encapsulating substrate)

Cathode Organic layers (plural layers) Transparent electrode Flexible substrate

**OLED** device



High gas barrier property:

\* No actual damage after storage test of 8,000 hours under 60°C/90%RH

\* WVTR (Water Vapor Transmission Rate): order of 10<sup>-6</sup>g/m<sup>2</sup>/day (60°C/90%RH)

Flexible OLED devices







Flexible OLED device with AFTINNOVA<sup>TM</sup> EF

Collaboration

Ajinomoto Co., Inc. / Ajinomoto Fine-Techno Co., Inc.

#### **Related program**

- Yamagata University Flexible Electronics Consortium for Academia-Industry Cooperation (YU-FLEC) [Jan. 2018~Mar. 2023]
- NEDO: Strategic technological innovation program for energy saving "Development of high efficient OLED materials" (Collaboration with CEREBA) [Aug. 2017~Mar. 2019].

18

• MEXT: Construction Program of Open Innovation Organization [FY2018~FY2022]

**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 

## **Topics / Publications**

## Award

➢ H. Nakada, M. Koden, "Award from Minister of State for Science and Technology Policy", Cabinet Office, Government of Japan, (2017).

## Book

≻ M. Koden, "OLED Displays and Lighting" (Wiley, IEEE Press) (2017).

## Paper

T. Furukawa, M. Koden, *IEICE Trans. Electron*, E100-C, 949-954 (2017).
"Novel roll-to-roll deposition and patterning of ITO on ultra-thin glass for flexible OLEDs"

## **International Conference**





山形大学 Yamagata University

- K. Taira, Taiga Suzuki, W. Konno, H Chiba, H. Itoh, M. Koden, T. Takahashi, T. Furukawa, *IDW'18*, FLX2-4L (2018). "Development of High Gas Barrier Film Using Novel Precursor by Roll to Roll PECVD"
- T. Suzuki, W. Konno, K. Taira, H Chiba, H. Itoh, M. Koden, T. Takahashi, T. Furukawa, *IDW'18*, FLXp1-10L (2018). "High Gas Barrier Films with Heterogeneous Multilayer"
- T. Furukawa, Advanced Materials-2018 (WCAM2018) (2018). [Invited] "Substrates for Organic Electronics - Ultra-thin Glass, Stainless Steel Foil and High Gas Barrier Plastic Film"
- M. Koden, T. Furukawa, T. Yuki, H. Nakada, LS16 (2018). [Invited] "Roll-to-roll and printing technologies for electrodes of flexible OLED lighting"
- T. Furukawa, N. Kawamura, T. Noda, Y. Hasegawa, D. Kobayashi, M. Koden, *IDW'17*, FLX6-2 (2017). "Novel Roll-to-Roll Fabrication Processes of Transparent Electrodes on Ultra-Thin Glass"
- K. Taira, T. Furukawa, N. Kawamura, M. Koden, T. Takahashi, *IDW'17*, FLXp1-8L (2017). "High gas barrier film for OLED"
- T. Furukawa, N. Kawamura, M. Koden, H. Itoh, H. Kuroiwa, K. Nagai, LOPEC (2017).
  "Gas barrier film for OLED devices"
- M. Koden, T. Furukawa, T. Yuki, H. Kobayashi, H. Nakada, *IDW/AD'16*, FLX3-1 (2016). [Invited] "Substrates and Non-ITO Electrodes for Flexible OLEDs"
- T. Furukawa, IWFPE2016 (2016). [Invited]
  "Flexible Substrates and Printed Transparent Electrode for OLED Lighting"

## **Exhibitions**

"JFlex2019" (Jan. 2019).
"LOPEC" (March 2018, Germany).
"Printable Electronics 2018" (Feb. 2018).
"LED & OLED EXPO 2017" (June 2017, Korea)
"Printable electronics 2017" (Feb. 2017).
"G7 Exhibition" (May. 2016).
"Printable electronics 2016" (Jan. 2016).



"International Photonics Exhibition 2015" (Korea) (Oct. 2015).

"National Museum of Nature and Science (Japan)" (May 2015).

"Printable electronics 2015" (Jan. 2015).

Printable Electronics 2017 Award "Originality Award" to INOEL



19

"Printable electronics 2016" (Jan. 2016) "Printable electronics 2017" (Feb. 2017) "Printable electronics 2018" (Feb. 2018)

**Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden)** 



## Members



**Professor, Deputy Director** Hitoshi Nakada nakada@yz.yamagata-u.ac.jp

#### **Field: Organic electronics devices**

| 1981      | Graduated at Tohoku University                       |
|-----------|------------------------------------------------------|
| 1981~2013 | Pioneer Corporation                                  |
| 1988~     | <b>R&amp;D</b> of OLED display and OLED lighting     |
| 2013~     | <b>INOEL, Yamagata University (current position)</b> |

#### (Award)

- •Award from Minister of State for Science and Technology Policy", Cabinet Office, Government of Japan (2017).
- Optoelectronics Industry and Technology Development Association,



#### **Professor Dr. Mitsuhiro Koden** koden@yz.yamagata-u.ac.jp http://www.asahi-net.or.jp/~ar3t-kudn/technology.html

#### Field: LCD, Display, OLED, Chemistry

Graduated at Osaka University (PhD) 1983 **1983~2012** Sharp Corporation (Liquid crystal materials, LCD, OLED display, etc.) **Guest prof. of Nara Institute of Science and Technology** 1998~2011 2012~ **INOEL, Yamagata University (current position)** 

#### (Award)

- •Award from Minister of State for Science and Technology Policy", Cabinet Office, Government of Japan (2017).

19th Kenjiro-Sakurai Memorial Award (2003).

•47th Okochi Memorial Award (2000).

(Development)

- World's first OLED product (passive-matrix OLED display) (1997).
- World's first phosphorescent OLED product (2003).
- Passive-matrix full-color flexible OLED display prototype (2003).

• Award from The Japanese Liquid Crystal Society (2005). (Development)

•17" Ferroelectric liquid crystal display (FLCD) prototype (1999). •3.6" Polymer OLED display with world's highest resolution (2006). (Book)

•M. Koden, "OLED Displays and Lighting" (Wiley; IEEE Press) (2017).

•K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, M. Sakamoto, "Alignment Technologies and Applications of Liquid Crystal Devices" Taylor & Francis (2005).



#### **Associate Professor Tadahiro Furukawa** ta-furukawa@yz.yamagata-u.ac.jp

#### Field: Fine patterning technology, Printing, **Roll-to-roll technology**

| 1984               | Graduated at Saitama University (Master degree)    |
|--------------------|----------------------------------------------------|
| 1984 <b>~</b> 2011 | Kyoto Printing Co., Ltd.                           |
|                    | <b>R&amp;D and production of Color filter (CF)</b> |
|                    | <b>R&amp;D of flexible CF and LCD</b>              |
| 2011~              | INOEL, Yamagata University (current position)      |

#### (International conference)

•T. Furukawa, WCAM2018 (2018). [China, Invited] •T. Furukawa, et al., *IDW'17*, FLX6-2 (2017). •T. Furukawa, *LED & OLED EXPO 2017* (2017). [Korea] •T. Furukawa, et al., *LOPEC* (2017). [Germany] •T. Furukawa, et al., *IDW/AD'16*, FLX3-3 (2016). •T. Furukawa, *IWFPE2016* (2016). [Korea, Invited] •T. Furukawa, et al., ICFPE 2016, O15-6 (2016).



#### **Associate Professor Dr. Toshinao Yuki** t-yuki@yz.yamagata-u.ac.jp

#### Field: OLED (Display, Lighting, Device),

1993~1996 Teijin Limited 1996~1999 Graduated at Yamagata University (PhD). 1999~2015 Tohoku Pioneer Corporation (PMOLED, AMOLED, Tiling OLED, OLED lighting, etc.) 2015~ **INOEL, Yamagata University (current position)** 

#### (Award)

• The 4th Japan OLED Forum Outstanding Achievement Awards (2011). (Development)

• World's first phosphorescent OLED product (2003).

- •World's first large size tiling OLED display product (2010).
- •World's first color-tunable OLED lighting product (2013).

January 2019 (revised in Feb. 2019) Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden Group) Innovation Center for Organic Electronics (INOEL) Yamagata University 1-808-48 Arcadia, Yonezawa, Yamagata 992-0119, Japan TEL +81-238-29-0575 E-mail: nakada@yz.yamagata-u.ac.jp E-mail: koden@yz.yamagata-u.ac.jp URL: http://inoel.yz.yamagata-u.ac.jp/F-consortium/home.html