

Barrier Technologies

Gas barrier technologies are important key technologies in **flexible** organic electronics devices (**OLEDs**, **OPV**, etc.).

We have several technologies for evaluating barrier properties.

Using these technologies, we collaborate with industrial companies, aiming at practical developments for actual products.

This material reviews fundamentals of gas barrier and our gas barrier technologies.

Yamagata University

Innovation Center for Organic Electronics (INOEL) Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden) http://inoel.yz.yamagata-u.ac.jp/F-consortium/home.html

(Contact) Prof. H. Nakada nakada@yz.yamagata-u.ac.jp Prof. M. Koden koden@yz.yamagata-u.ac.jp

Gas barrier in flexible organic electronics devices

- ✓ Flexible organic electronics devices degrade by penetrations of gasses such as H₂O.
- ✓ Therefore, barrier technologies protecting gas penetration are noncausality required.
 ✓ H₂O
 H₂O

INOEL Yamagata University Innovation Center for Organic Electronics

Required WVTR of flexible substrates

Yamagata University Innovation Center for Organic Electronics

Three types of evaluation technologies for barrier properties

	OLED device	Ca corrosion method	Differential pressure
Points	Evaluation of degradation of OLED devices under storage.	Evaluation of degradation of Ca which is deposited on a sample.	Use of equipment for evaluating the amount of gas passing a sample.
Advantages	• Evaluation of actual OLED device.	 Possible to calculate WVTR Visualization of degradation for discussing reasons of degradation. Parallel evaluation of plural samples. 	 Possible to calculate WVTR Non-need of device fabrication Possible to evaluate non- transparent samples
Disadvantages	 Calculation of WVTR is difficult. Need to care of other disturbing factors such as out-gas from inside of OLED device. 	 Need of device fabrication Evaluation of only transparent samples Evaluation of only H₂O 	 Need to care of other disturbing factors such as defects and pinholes of samples Only one sample evaluation No visual image

INOE

Ca corrosion method

✓ Evaluation of degradation of Ca deposited on a sample [1] •Ca+2H₂O→Ca(OH)₂+H₂

WVTR is able to be calculated from the results of Ca corrosion.
 WVTR: Water Vapor Transmission Rate (g/m²/day)

Innovation Center for Organic Electronics

Equipment for Ca corrosion method

[1] G. Nisato, M. Kuilder, P, Bouten, L. Moro, O. Philips, N. Rutherford, SID 03 DIGEST, P-88 (2003).

OLED device and Ca corrosion test

Dark spots of OLED (after 560hours)

Ca test (after 595 hours)

<Storage tests under 40 °C and 90 %RH>

INOEL JanKgaTaira, si J. Furukawa, N. Kawamura, M. Koden, T. Takahashi, *IDW'17*, FLXp1-8L (2017).

WVTR (Water Vapor Transmission Rate) evaluation (Collaborating with MORESCO)

- We provide WVTR (Water Vapor Transmission Rate) evaluation, using the WVTR measurement equipment "Super Detect" of MORESCO.
- The "Super Detect" utilizes the MA method (Modified differential pressure method with an Attached support) developed by the collaboration of MORESCO and AIST (National Institute of Advanced Industrial Science and Technology).
- The MA method reduces measurement time of high gas barrier film such as better than 10⁻⁴ g/(m² day), which are required in flexible OLED, OPV, etc. For example, the "Super Detect" requires only about 20 hours for the WVTR measurement of barrier films with the order of 10⁻⁵ g/(m² day), for which the previous methods require about 100 hours. It should be noticed that the measurement time of the "Super Detect" is only 1/5 of previous methods.
- > In addition, the "Super Detect" is able to evaluate wide ranges of WVTR such as $10^{+1} \sim 10^{-7}$ g/(m² day).
- > The "Super Detect" with the MA method is able to warrant the WVTR value by the attached compensating unit developed by AIST.
- Moreover, the "Super Detect" is able to evaluate the transmission rate of not only water vapor but also various gasses.

WVTR equipment (MA method)

7

Bending equipment

✓ The influences of various bending stress on device characteristics, barrier properties, etc. are evaluated using three types of bending equipment.

U-shape sliding

Folding

Both-side bending

Example of barrier technologies

EXPEEK[®] barrier films by the collaboration with KURABO

✓ The Si₃N₄ layers (100nm) by sputtering show poor barrier ability with the WVTR of the order of 10⁻³g/m²/day.

T. Yuki, T. Nishikawa, M. Sugimoto, H. Nakada, M. Koden, IDW'20, FLX2-3 (2020).

Innovation Center for Organic Electronics

Example of barrier technologies

EXPEEK[®] barrier films by the collaboration with KURABO

✓ The three layers staking with Si₃N₄ (100nm) by sputtering and Al₂O₃ (90nm) by ALD (Atomic Layer Deposition) achieve good barrier ability with the WVTR of the order of 10⁻⁵g/m²/day.

Yamagata Universityuki, T. Nishikawa, M. Sugimoto, H. Nakada, M. Koden, IDW'20, FLX2-3 (2020). Innovation Center for Organic Electronics

Example of barrier technologies

TFE (Thin Film Encapsulation) using UV-IJ resin of TOYO INK

Summary

Our barrier technologies contribute practical R&D in industrial companies by collaborations using our rich knowledge and skills.

Please do not hesitate to contact with us.

(Contact)

E-mail: nakada@yz.yamagata-u.ac.jp E-mail: koden@yz.yamagata-u.ac.jp

Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden Group) Innovation Center for Organic Electronics (INOEL) Yamagata University URL:https://inoel.yz.yamagata-u.ac.jp/F-consortium/home-e.html