

Yamagata University Flexible Electronics Japan-Germany International Collaborative Practical Utilization Consortium (YU-FIC)

Professor Dr. Tatsuhiro Takahashi

Associate Professor Tadahiro Furukawa

Professor Dr. Mitsuhiro Koden

Planning Advisor Dr. Shoko Usui

Project Scientist Masanori Abe

Staff Haruka Suzuki

Secretary Mariko Hoshina

Yamagata University **Contact person:** Tadahiro Furukawa Prof. R&D, Project Leader ta-furukawa@yz.yamagata-u.ac.jp 1-808-48 Arcadia, Yonezawa, Yamagata 992-0119, Japan TEL +81-238-29-0575

Innovation Center for Organic Electronics (INOEL)

Related program

• JST: OPERA Program Grant Number JPMOP1614 [FY2016~FY2020].

• MEXT: Construction Program of Open Innovation Organization [FY2018~FY2022].

Web pages

Home page: https://inoel.yz.yamagata-u.ac.jp/yu-fic-en/

Related section

Research Group for Flexible Technologies (Nakada/Furukawa/Yuki/Koden Group)

Yamagata University Flexible Electronics Japan-Germany International Collaborative Practical Utilization Consortium (YU-FIC)

Yamagata University Flexible Electronics Japan-Germany International Collaborative Practical Utilization Consortium (YU-FIC) collaborates with companies and institutes in Germany, aiming at novel flexible electronics products.

Subjects

- > Development of large area OLED lighting on flexible substrates
- > Product development for signage using OLED
- Free Form Electronics Freedom in design by thermo-formed printed electronics

Collaboration with German activity

YU-FIC collaborates with German companies and institutes which are organized by Organic Electronics Saxony (OES), having twice visits a every year, respectively.

Activity

LOPEC/Germany (Mar. 2019)

- Flex Japan 2019 (May 2019)
- Germany (Sep. 2019)

Japan (Jan. 2020)

JFlex (Jan. 2020)

The 9th Germany-Japan Joint Workshop "Flexible, Printed Electronics and Sensors" February 26th 2021 German time 08:30-11:30, Japanese time 16:30-19:30 (online)

Roll-to-roll (R2R) and Printing Technologies

We provide roll-to-roll (R2R) and printing technologies, aiming at an innovation of productions in flexible organic electronics.

Roll-to-roll (R2R)

Unique roll-to-roll (R2R) equipment are utilized for fabrications of electrodes, barrier layers, organic layers, etc.

- Substrate width: 30cm
- ·Substrate: ultra-thin glass, stainless steel foil, flexible film

R2R sputtering &CVD (KOBELCO)

Printing / Coating

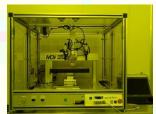
R2R screen printing and slitcoating (SERIA)

R2R wet cleaning (FEBACS)

Process technologies

Various printing and coating equipment can be utilized for printing tests and device fabrications.

Spin-coating



Screen printing

Evaluation

Flexography and gravure offset printing Various equipment for process technologies can be used.

Cutting Machine for Ultra-thin Glass

3D Forming Machine

Various evaluation equipment are used for R&D of printing and roll-to-roll (R2R) technologies.

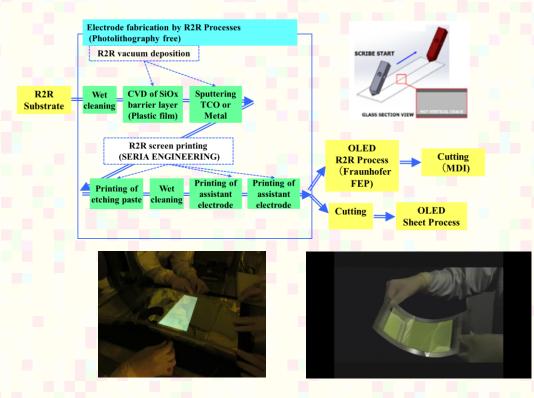
Viscoelasticity measurement

Precise position detector

Evaluation equipment of Ca corrosion

Evaluation equipment of WVTR

Flexible OLEDs on Ultra-Thin Glass


We develop flexible OLED devices on ultra-thin glass G-Leaf® (Nippon Electric Glass).

Technological features

- Advantages of ultra-thin glass G-Leaf[®] of Nippon Electric Glass
 Flexible and roll shape due to thin thickness such as 50µm
 - •Intrinsic advantages of glass (gas barrier, surface smoothness, temperature stability, chemical stability, size stability, etc.)

Developed technologies

- Flexible OLED devices on ultra-thin glass with the thickness of 50µm
 Roll-to-roll (R2R) fabrication of transparent electrodes and assistant electrode on ultra-thin glass without photolithography
 - ·Handling and cutting technologies for ultra-thin glass
 - Application of ultra-thin glass to OLED substrate and encapsulating substrate.

Collaboration

Publication

Fraunhofer FEP, Nippon Electric Glass, SERIA ENGINEERING, FEBACS, Mitsuboshi Diamond Industrial, NIPPON STEEL Chemical & Material Co., Ltd. FUJIKURA KASEI, TaicaCorporation, tesa

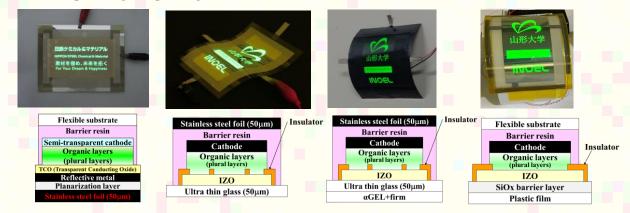
- T. Nakagaki, T. Kawabata, H. Takimoto, T. Furukawa, IDW'19, FLXp1-9L (2019). "Scribing Tool and Cutting Method for Ultra-thin Glass"
- T. Furukawa, N. Kawamura, T. Noda, Y. Hasegawa, D. Kobayashi, M. Koden, *IDW'17*, FLX6-2 (2017).
- "Novel Roll-to-Roll Fabrication Processes of Transparent Electrodes on Ultra-Thin Glass"
- T. Furukawa, M. Koden, *IEICE Trans. Electron*, E100-C, 949-954 (2017).
- "Novel roll-to-roll deposition and patterning of ITO on ultra-thin glass for flexible OLEDs"
 T. Furukawa, K. Mitsugi, S, Akiyama, H, Itoh, D, Kobayashi, T. Suzuki, H,kuroiwa, M, Sakakibara, K,Tanaka, M, Kawamura, and M, Koden, IDW'14, FLX3-4 (2014). "Patterned ITO Film by Roll-to-Roll Process on Ultra-thin Glass"

Stainless Steel Foils and Barrier Film

We develop flexible OLED devices using stainless steel foil and barrier film.

Technological features

- Advantages of stainless steel foils of NIPPON STEEL Chemical & Material Co., Ltd.
 Thickness: 50µm or 30µm
 - Excellent temperature and process resistances
 - •High gas barrier ability
- Barrier Film
 - •High barrier ability with WVTR (Water Vapor Transmission Rate) of the order of 10⁻⁶g/m²/day
 - High gas barrier films with transparent electrode


Developed technologies

Stainless steel foil

• Electrode (reflective anode) is fabricated on stainless steel foil by roll-to-roll (R2R) photolithographyfree processes

- · Development of flexible OLED devices on stainless steel foil
- Improved mechanical durability of OLED devices by using stainless steel foil as an
- encapsulation substrate
- Barrier Film

• Roll-to-roll (R2R) photolithography-free fabrication of barrier layer(PE-CVD) and transparent electrode (spattering and printing) on Plastic film

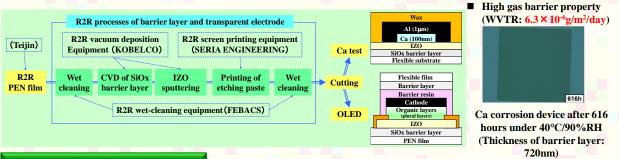
Collaboration

Teijin, NIPPON STEEL Chemical & Material, Nippon Electric Glass, Mitsuboshi Diamond Industrial, FUJIKURA KASEI, tasa

Publication

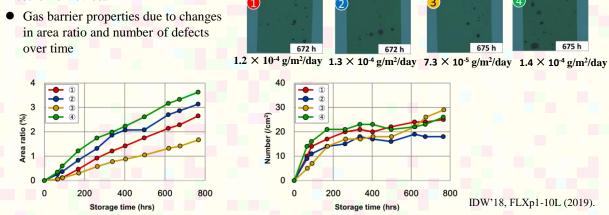
- Y. Hagiwara, T. Furukawa, T. Yuki, S. Yamaguchi, N. Yamada, J. Nakatsuka, M. Koden, H. Nakada, *IDW'17*, FLXp1-9L(2017). "Roll-to-Roll Patterning of Reflective Electrode on Planarized Stainless Steel Foil"
- M. Koden, T. Furukawa, T. Yuki, H. Kobayashi, H. Nakada, IDW/AD'16, FLX3-1 (2016).
- "Substrates and Non-ITO Electrodes for Flexible OLEDs"
- Y. Hagiwara, H. Itoh, T. Furukawa, H. Kobayashi, S. Yamaguchi, N. Yamada, J. Nakatsuka, M. Koden, H. Nakada, *IDW/AD'16*, FLXp1-5 (2016). "Roll-to-Roll Processing of Silver/ITO Continuous Deposition on Planarized Stainless Steel Foil"
- K. Taira, Taiga Suzuki, W. Konno, H Chiba, H. Itoh, M. Koden, T. Takahashi, T. Furukawa, IDW'18, FLX2-4L (2019). "Development of High Gas Barrier Film Using Novel Precursor by Roll to Roll PECVD"
- T. Suzuki, W. Konno, K. Taira, H Chiba, H. Itoh, M. Koden, T. Takahashi, T. Furukawa, IDW'18, FLXp1-10L (2019). "High Gas Barrier Films with Heterogeneous Multilayer"
- K. Taira, T. Furukawa, N. Kawamura, M. Koden, T. Takahashi, IDW'17, FLXp1-8L (2018). "High gas barrier film for OLED"
- T. Furukawa, N. Kawamura, M. Koden, H. Itoh, H. Kuroiwa, K. Nagai, LOPEC (2017). "Gas barrier film for OLED devices"

Roll-to-Roll (R2R) Fabrication of Barrier Film and Evaluation of Barrier Properties


We develop fabrication technologies of gas barrier layer and transparent electrode on flexible film, using roll-to-roll (R2R) PE-CVD (Plasma Enhanced Chemical Vapor Deposition)

Technological features

- Roll-to-roll (R2R) PE-CVD deposition of gas barrier layer on flexible films
- High barrier ability with WVTR (Water Vapor Transmission Rate) of the order of 10⁻⁶g/m²/day
- High gas barrier films with transparent electrode
- Evaluation for gas barrier film


Developed technologies

Roll-to-roll (R2R) photolithography-free fabrication of barrier layer and transparent electrode on flexible films

International standard

We contributed to the establishment of standards for high gas barrier film SEMI D78 - Test Method of Water Vapor Barrier Property for Plastic Films with High Barrier for Electronic Devices

SEMI D80 - Test Method for Measurement of Water Vapor Transmission Rate for High Gas Barrier Plastic Film in a Short Time

• Measurement of WVTR using Quadrupole mass spectrometer

TEIJIN LIMITED, Tosoh Corporation, MORESCO

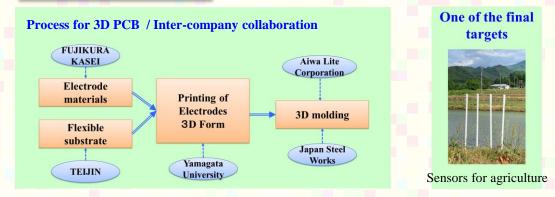
Related program

Collaboration

- JST: OPERA Program Grant Number JPMOP1614 [FY2016~FY2020].
- MEXT: Construction Program of Open Innovation Organization [FY2018~FY2022].

3D-molding technologies

We develop 3D-molding technologies with electrodes for developing fabrication processes of 3D-circuit board and their applications.


Technological features

- **3D-molding technologies with electrodes**
- Process simplification in fabrication of circuit board by printing technologies

Application areas

Automotive interiors (lighting, controller, etc. of instrument panels and consoles)
 Thin IoT devices

Collaboration scheme

Developed technologies

3D-shaped prototype with touch screen and LEDs

Aiwa Lite Corporation, The Japan Steel Works, LTD. , TEIJIN LIMITED , FUJIKURA KASEI CO., LTD. , Nishimu Electronics Industries Co., Ltd.

Related program

• JST: OPERA Program Grant Number JPMOP1614 [FY2016~FY2020].

MEXT: Construction Program of Open Innovation Organization [FY2018~FY2022].

Unique application with OLEDs

Technological features

Unique application to packages etc.

Developed technologies

Bookmark

Medicine case

Traditional Japanese helmet

Mouse shield

Collaboration

Nameplate with wood pattern

Pencil case

KOMORI Corporation, TAKEDA PRINTING CO. LTD., Taica Corporation

International Conference

- Y. Kawamura, T. Takahashi, T. Furukawa, ICFPE2021 (2021), "Improvement of printed electrodes disconnection after 3D thermoforming by optimizing print process on PC film"
- Y. Kawamura, T. Takahashi, K. Wakabayashi, H. Hirose, Y. Azakami, H. Itoh, T. Furukawa, IDW'20, FLX3-04L (2020). "Effect of Pressure Forming Conditions on PC Sheet integrating Electric Wiring for 3D Electronics Technology"
- T. Nakagaki, T. Kawabata, H. Takimoto, T. Furukawa, *IDW'19*, FLXp1-9L (2019). "Scribing Tool and Cutting Method for Ultra-thin Glass"
- T. Furukawa, M. Koden, ICDT2019 (2019). "Novel R2R and Printing Technologies for Electrodes of Flexible OLED Lighting"
- K. Taira, Taiga Suzuki, W. Konno, H Chiba, H. Itoh, M. Koden, T. Takahashi, T. Furukawa, *IDW'18*, FLX2-4L (2018). "Development of High Gas Barrier Film Using Novel Precursor by Roll to Roll PECVD"
- T. Furukawa, Advanced Materials-2018 (WCAM2018) (2018). [Invited]
 "Substrates for Organic Electronics Ultra-thin Glass, Stainless Steel Foil and High Gas Barrier Plastic Film"
- M. Koden, T. Furukawa, T. Yuki, H. Nakada, LS16 (2018). [Invited] "Roll-to-roll and printing technologies for electrodes of flexible OLED lighting"
- T. Furukawa, N. Kawamura, T. Noda, Y. Hasegawa, D. Kobayashi, M. Koden, *IDW'17*, FLX6-2 (2017).
 "Novel Roll-to-Roll Fabrication Processes of Transparent Electrodes on Ultra-Thin Glass"
- T. Furukawa, N. Kawamura, M. Koden, H. Itoh, H. Kuroiwa, K. Nagai, LOPEC (2017).
 "Gas barrier film for OLED devices"
- M. Koden, T. Furukawa, T. Yuki, H. Kobayashi, H. Nakada, *IDW/AD'16*, FLX3-1 (2016). [Invited] "Substrates and Non-ITO Electrodes for Flexible OLEDs"
- T. Furukawa, IWFPE2016 (2016). [Invited]
- "Flexible Substrates and Printed Transparent Electrode for OLED Lighting"
- T. Furukawa, N. Kawamura, H. Nakada, M. Koden, The International Conference on Flexible and Printed Electronics (ICFPE 2016), O15-6 (2016). "Novel ITO fabrication processes on ultra-thin glass"